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ABSTRACT 

The results herein solve positively some conjectures of Smoryfiski by generaliz- 
ing results of Solovay (1976), The proofs rest on a modification of the usual 
semantics for modal logic and Solovay's techniques. 

§1. Introduction 

Mn is the modal language consisting of 

propositional variables: 

propositional constant: 

logical connectives: 

modal operators: 

po, p l ,  p2 . . . .  

_L 

V~A~-'-I~""~ 

l-q ~ , f-q 2 . . . . .  F l n 

The f o r m u l a s  of M. are constructed inductively in the usual way so that [-I~A is a 

formula if A is. A t heory  in the language M. is a collection of formulas of M. 

which contains all tautologies and,is closed under modus ponens. If gt is a set of 

formulas of M, and B is a formula of Mn then M F B means B is in the theory 

generated by M. 

PA is the standard first order formalization of Peano Arithmetic (e.g. as in 

[4]). 0 is the constant representing 0 and for each natural number n let ti, the 
n u m e r a l  for n, be S~0. For each formula ~ in the language of PA, r~l is the 

G6del number of ~ and if the free variables of ~ are among vl,. . . ,vk then 

r~ (it  . . . .  , ik)t is the function definable in PA which represents the substitution of 
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the numerals for X l  . . . . .  Xk in the free occurrences of v~ . . . . .  vk respectively. In 

particular, 

PA k rq~(ri~ . . . . .  rik) 1 = I~(n, . . . . .  nk) 1. 

All first order theories are tacitly assumed to be axiomatizable (i.e. recursively 

enumerable) and to be equipped with an interpretation of PA. If T is a first 

order theory then Prr is a unary predicate ~-definable in PA which formalizes 

provability in T. In particular, Prr satisfies the following derivability conditions : 

D1. Tk~o if[ PAkPrr(t~ol), 

D2. PA I- Prr(rq~ 1)_._~ Prr(rprr (fq~l)l), 

D3. PAkPrr(fq~ 1) ̂  Prr(rq~ ~ ~1)___~ prr(t~bl), 

D4. PAk~(x~ .. . . .  x°)---~Prr(fg~(2, . . . . .  ./k) 1) for E, formulas. 

A theory T is "£~-sound if every ~, arithmetic sentence proved by T is true; T is 

arithmetically sound if every arithmetic sentence proved by T is true. 

Given theories T~ . . . . .  T~ an interpretation of Mo with respect to T~ . . . . .  To is an 

assignment p ~ p *  of arithmetic sentences to propositional variables. * is 

extended to all formulas of M. inductively by preserving logical connectives and 
so that J_* is 0 ~  0 a ,d  ([Z],A)* is Prr,(tA .1). A formula A of M. is T-valid with 

respect to T~ . . . . .  7". if TI-A * for all interpretations *; A is valid with respect 

to T~ . . . . .  T. if A* is true (in the standard model) for all *. 

The primary purpose of this paper is to study the decidability of the collection 

of valid formulas for various T~ . . . . .  T,. Note that if the collection of formulas of 

MR which are valid with respect to T~ . . . . .  T, is decidable then the collection of 

Z-valid formulas is decidable (remember that all first order theories are 

assumed to be E~-sound). Generalizing the solution by Boolos [1] of a problem of 

Friedman [2], Solovay [6] showed that if n = 1 then the collection of valid 

formulas is decidable. Smoryfiski conjectured that the set of valid formulas with 

respect to PA, ZF is decidable. The main result of this paper, Theorem 2 of 

Section 3, proves a generalization of Smoryfiski's conjecture. An axiomatization 

is given for the collection of valid formulas. The relevant modal theories and the 

appropriate semantics are developed in Section 2. The central modal theories, 

PRL(n),  are generalizations of PRL(2) which Smoryfiski suggested (under a 

different name) and which in turn generalizes G of [6]. Section 4 contains what 

I consider an amusing application: There is a Boolean combination of E1 

formulas, q~, such that PA + Con(PA) k Con(PA + ~,) and PA + 

Con(PA) I- Con(PA + --1 ~0) while ZF Y Con(PA + Con(PA) + ~)  and 

ZFYCon(PA + Con(PA)+ --n ~o). 
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§2. The theory PRLn 

PRL, is the theory in M, generated from the axiom schemas 

A1. Tautologies, 

A2.7qiA ^ I-]i(A --> B )--->I-liB, 

A3. DiA --> [-1;[-l~A, 

A4. [-1,([:],A -'-> A )-->[~A, 

using the rules of inference 

A A-->B 
R1. B (modus ponens) 

A 
R 2 . - -  

C],A 

An M , - m o d e l  is a tuple Y/= (K,<~,IF, D~ . . . . .  D,)  where <1 is a strict partial 

ordering of K, IF is a subset of K × {p. :n E w} and D~ _C K for i = 1 . . . . .  n. K is 

called the universe of Y/and tF is the forcing relation of Y/. The intuition (as with 

standard Kripke models) is that the elements of K are possible worlds, and for 

w E K, {p : w IFp} consists of all propositions true in w. IF is extended inductively 

to other formulas, so that w ~ ± and 

wIFA vB iff wIFA or wIFB, 

w I F A ^ B  iff wlFA and wlFB, 

w IF--mA iff w ~ A ,  

w lF A ---~ B iff w ~ A or w lF B, 

wlFI-I~A iff u lF A whenever  w <J u E D~ ; 

Y/is a model  of A if w IFA for each w ~ K. Y/is a model  of a set of formulas 

if Y/is a model of each element of ~/. Th(Y/) is the collection of all A for which Y/ 

is a model. If Y/' = (K',  <~', IF', D ~ . . . . .  D 'n) is an M~-model then K'  is a submodel  

of Y/ provided K ' C _ K  and <~', IF', D~ . . . . .  D', are the restrictions of <~, IF, 

Dz . . . . .  Dn respectively to K'. 

LEMMA 1. I f  Y~ is an Mn-mode l  then Th(Y/) contains A1-A3 and is closed 

under R1 and R2. 

PROOF. Straightforward. • 

Assume s¢ is a collection of formulas of Mn containing the schemas A1-A3 

and let T be the theory in M, generated from M using R1 and R2. The canonical  

model  of T, Y/r, will be constructed intermittently with the following lemmas. 
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L e t / (  be the set of all complete consistent theories in the language Mn which 

extend T. For 1 _-< i ~ n and w E / ( ,  w/D,  is the set of formulas A such that 

I l iA E w. 

LEMMA 2. W /m~ is a theory extending T. 

PROOF. R2 guarantees that w/Il~ extends T, and w/f-]~ is closed under modus 

ponens by A2. • 

For l=<i=<n define a binary relation <~ on / ( b y  w~<~w:if f  w~/Il~Cw2. 

LEMMA 3. /[ W~ < iw2 < ~w3 then w~ < ~w3. In particular, < ~ is transitive. 

PROOF. Assume w~ <iw2 <,w3, i.e. w,/I l j  C_ w~_ and w2/D~ C_ w~. Suppose 

[]~A @ w~. By A3 and modus ponens, F-Ij[3~A E w~. Therefore,  I--]iA E w2 and 

A ~w3.  • 

is the generalized Kripke model (/(, <~ . . . . .  < , ,  IIF) where w IIF p iff p C w. 

Extend IIF to other formulas of M, as before in the case of logical connectives 

and so that w IIF[],A iff u IIFA whenever w <~u. 

LEMMA 4. W IIF A if[ A E w. 

PROOF. By induction on the complexity of A. 

For A a proposition variable this is by definition, A = 3_ is clear, and the 

induction is obvious if A has one of the forms B v C, B ^ C, "-7 B or B---> C. 

Suppose A = D~B. 

Assume A f~ w. B E  w/l--]~ so w/ i l i  U { ~ B }  generates a consistent theory v 

(using only modus ponens) by Lemma 2. Extend v to a complete consistent 

theory u. w <~ u and by the induction hypothesis u IIF -~ B. This implies w.lgFA. 

Now assume A E w. B E w/ I i ,  so if w <~u then u J ~ B  by the induction 

hypothesis. Therefore  w IIF A. • 

Let < be the transitive closure of < ~ U  < 2 U . . . U  < , .  

LEMMA 5. If  W~ < W,. < ~w3 then w~ <~ w3. 

PROOf. By Lemma 3. • 

Y/'r is the M,-mode l  (K, C_ ,IF,D~ . . . . .  D , )  where K consists of all finite 

sequences (w~ . . . . .  wk) of elements o f / (  with wj < w2< " "  < wk, (w~ . . . . .  wk)lFp 

iff p E w~ and D~ consists of all (w~ . . . . .  wk+~) such that wk <~wk+~. 

LEMMA 6. (W~ . . . . .  Wk) IF A i f / A  E w~. 

PROOV. By induction on the complexity of A. 
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As in Lemma 4, the nontrivial case is A = I-liB. 

Assume A~:wk.  w~k~DiB so w i l l k~B  for some w E / (  with wk<iw.  

(w~ .. . . .  wk.w)E D~ and by Lemma 4 and the induction hypothesis 

(w, . . . . .  w~, w)lk~B. Therefore, (w~ .. . . .  wk)~A.  

Now suppose A E wk. If (w~ .. . . .  Wk, Wk+~ .. . . .  W,)E Di then wk <iw, by the 

previous lemma so B E w, and (w~ ... . .  w,) IFB. Therefore (wj . . . . .  wk) IFA. • 

LEMMA 7. Y{r is a model of T. 

PROOF. Immediate. • 

LEMMA 8. l[ FliA --~D~A is in T for all A then Di ~_ Dj. 

PPROOF. The assumption implies w / D , ~  w/[~j for all w E K*. Hence, if 

w~ < iw2 then w~ < iw_, which implies D~ _D Di. • 

THEOREM 1. Assume ~ is a set of formulas of M, containing schemas A1-A3 

and let The  the theory generated from sg using R1 and R2. I f  B is a formula of M, 

the following are equivalent: 

1. B E T .  
2. Every model of T is a model of B. 

3. Y{T is a model of B. 

PROOF. (1 ~ 2) By Lemma 1. 

(2 ~ 3) By Lemma 7. 
(3 ~ 1) Suppose B E  T. Let w be a complete consistent theory containing T 

and --qB. In Y{r, wJ¢B. • 

REMARK. Assume ~/ is a set of formulas of M, containing A1-A3 with the 

property that C],A .. . . .  DI°A E s¢ whenever A E s / a n d  A doesn't have the form 

F-q~B. If T is the theory generated by .ff using R1 and R2 then B E T if[ .ff k B. 

This may be proved syntactically or by modifying the construction of YEt by 

letting /( be all complete consistent theories containing M. 

This implies that for any M containing A1-A3, if B can be derived from 

using R1 and R2 then B has a derivation in which all applications of R2 come 

before any application of R1. 

LEMMA 9. Assume T is a theory in Mn which contains A1-A4 and is closed 

under R 1 and R 2. If  ~ is a finite set of formulas of Mn, ~f = (K, <~, IF, D , . . . ,  D. )  

is a model of T and w~ ... . .  wk E K then there is a finite submodel K ' =  

(K',<~',IF', D'~ . . . . .  D ',) of ~ whose universe contains w~ ... . .  w~ such that for each w 

in the universe of Y{' and each A E ~1 

wlk'A iff w lk A. 
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PROOF. Without loss of generality ~ff is closed under subformulas. Let 

A~ .. . . .  A,, list the elements of ,ff of the form D]~B. If 1 _-<j -< m and Aj = 73,B 

choose f~ :K- -*K (a Skolem function for At) so that ~ ( w ) =  w if wlFAj and if 

wlF-~Aj then w<3fj(w)E D~ and ~(w)IF~B ^C],B. This is possible by A4. 

CLAIM 1. If K ' C_ K is closed under f ~ . . . . .  f,. and 3{' is the submodel of Yf with 

universe K'  then w IF'A iff w IFA whenever w ~ K'  and A C ~l. 

The proof of Claim 1 is straightforward induction on the complexity of A. 

Note that f j ( w ) ~ u  implies ~ ( u ) =  u. This easily implies 

CLAIM 2. The closure of {w, . . . . .  w~ } under f, . . . . .  f,. is finite. 

By Claims 1 and 2 the lemma follows. • 

An M,-model ~7{" = (K,<J,IF, D, .....  D , )  is treelike if (/(,<1) is a tree, that is, 

{u C K:u<3w} is linearly ordered for w E K. 

Assume ~ is a strict partial ordering of {1 .. . . .  n}. PRL(~)  is the theory in the 

language M, generated by R1 and R2 from A1-A4 along with the schema 

A ~ .  [5]~A --~ [2iA for i <~j. 

LEMMA 10. If 5r( = (K. <,  IF, D, ..... D , )  is a finite M,-model  with D, D_ D, 

whenever i <~j  then Y[ is a model of PRL(°)). 

PROOF. To check A4 use the fact that K is finite (in fact the assumption that 

<J has no infinite increasing chain w,,<Jw,<Jw2<J.., is enough). • 

THEOREM 2. Assume A is a formula of M, and T is the theory generated by 

P R L ( ~ )  U {A } where ~ is a strict partial ordering of {1 . . . . .  n }. If  B is a formula of 

M, then B @ T iff every finite treelike model of A which satisfies D~ D Dj whenever 

i < , j  is a model of 13. 

PROOF. ( : i f )  By Theorem 1 and Lemma 10. 

( ~ )  Suppose 13 C T. There is w E KT such that w l F ~ B  (in Y{r) by Theorem 

1. By Lemma 9 there's a finite submodel Y{' of KT which is a model of A but not 
of B. Y{' is treelike since Y{'~ is. By Lemma 8, D'~D_D'j if i < ~ j  where 

a~{ ' =  (K', C_ ,IF',DI . . . . .  D').  • 

COROLLARY. PRL(~)  is recursive. 

§3. Decidability of the collection of valid formulas 

If T is a first order theory then Refl(T) is the schema of sentences of the form 
Prr(r~l) --> 9- 
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The main result of this section is 

THEOREM 1. Assume T~ ... . .  T. are first order theories which are arithmetically 

sound and T~ contains Refl(T~) if i < j. The collection of formulas which are valid 

with respect to T, . . . . .  T, is recursive. 

Note that the conclusion of the theorem implies that the set of Z-valid 

formulas is recursive since A is T~-valid with respect to T~ . . . . .  7". iff []~A is valid. 

If ~ is the usual linear ordering of {1 .. . . .  n} write PRL(n) for PRL(,@). 

PRL(n)  + is the theory in M, generated by R1 and R2 from PRL(n) along with 

formulas of the form Dj(IZ],B ~ B) where i < j. Refl~ is the schema consisting of 

the formulas of the form E3~B ~ B. 

Theorem 1 follows from 

THEOREM 2. Assume T, . . . . .  T, are arithmetically sound first order theories 

such that Tj contains Refl(T~) for i < j. I r A  is a formula of M, 

(1) the following are equivalent: 

(a) A is valid with respect to T, . . . . .  T,, 

(b) PRL(n)+ + RefL(1 < i =< n)kA, 

(c) the following is a theorem of PRL(n): 

( I~ {Dj(C],B---~ B):[Z],B ~ S ( A  ) and i < j } ) ^  (/~ {C],B--* B :[3,B 6 S ( A  )})-~ A ; 

(2) the following are equivalent for 

(a) A is Tk-valid with respect to 

(b) PRL(n)+ + Reflj (1 < i < k)k 

(c) the following is a theorem of 

l<_k<__n: 

T~ ... . .  7"., 

A, 
PRL(n): 

(&{D,(E3~B ~ B):  D,B e S ( A )  and i < j}) 

^ (&{DiB--~ B :[Z]~B e S ( A )  and i < k})---~A ; 

where S ( A  ) is the collection of subformulas of A. 

The proof will use a modification of the function h from [6]. 
Suppose Y~ = (K,<1,1F, DI . . . . .  D,)  is a finite treelike M,-model where K = 

{1 . . . . .  m} and 1 is the smallest element of K with respect to <1. Also assume 

K = D,D_D2D_ " .  D_D,. Fix k with l <=k <=n. 
Let Yfk = ({0,1 . . . . .  m},<Llkk, D~ .. . . .  Dk,) where we extend <1 to 0 so that 0<~1, 

IF k extends IF and 01kkp if[ llbp, and 

D,k = I D, U {1} if i -< k, 

[ D , - { 1 }  if k < i .  
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Set D~.~ = O for convenience. Note that for any formula A of Mo, xl~-kA iff 
xlI-A for x # 0 .  

Using the recursion theorem, there is a X~-definable function hk in PA such 

that PA proves 

hk (0) = 0 

x if a is the Godel number of a proof of 

hk(a + 1) = J?~ (k in T~ and hk(a)<~x E Dr, 
hk (a) otherwise, 

where t'k is a constant defined in PA to be l i m , ~ h k ( a ) .  One can prove in PA 

that hk(a)'~ hk(a + 1) so that (k is defined. 

LEMMA 1. PA ~- £ = t'k ~ PrpA(r~ ~ gkl). 

PROOF. PA~-y = hk (a)---~ PraA(r)~ = hk (~i)l) by using induction on a. • 

LEMMA 2. I f x # O  and xffDr+, then PALl  = t°k-~Prr,(r.~# t~kl). 

PROOF. Immediate from the choice of hk. • 

LEMMA 3. T , l - ~ / 0 ~ t ~  ~ D r .  

PROOF. This is obvious for i = 1 since Dt~ = K .  

Suppose i ¢  1, x / 0  and xff  Dr. By the previous lemma 

PA F- ~ = 4,, ~ Prr,_i(rx/ (k l ) .  

Since T, _D Refl(T~_,), 

T~t-Pr~, , ( r ~ #  ~ k l ) ~  ~. 

Therefore T,I-.g~ t'~. • 

Define C o n ( T +  ~,) to be --nPrr(t--n~ol). 

LEMMA 4. Ifx<~y E D r  then PAI-£ = t°k---~Con(T, . +)7 = t~k). 

PROOF. Immediate from the properties of hk. • 

Define an interpretation * with respect to 7"1 . . . . .  7", by letting p* be 

W{~ = (k :xlt-p}. Note that p* is equivalent to a Boolean combination of X~ 

sentences in PA. In fact, if p has the property that if {w E K : w II-p} is closed 

upwards with respect to .~ then p* is equivalent to a X~ sentence in PA. 

LEMMA 5. Assume A is a formula of M, such that IlHS]j([-q~B--~ B) whenever 
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[S]iB E S ( A  ) with i < ] and 11FDiB ~ B whenever [],B ~ S (A  ) and i < k. I[ x # 0 

then x IFA implies PAF£ = (k ~ A * and x IF--,A implies PAF£ = (k --~ ~ A  *. 

PROOF. By induction on the complexity of A. 

If A is a propositional variable or constant the conclusion is immediate from 

the definition of *, and the inductive step for v, ^, --1 or ~ is straightforward. 

Suppose A = I-q~B and 0 # x =< m. 

Case I. x lF A 

First suppose x ED~+~. Note that xlFB. For if x = l  then i < k  and 

xlFI~,B--~B and if x #  1 then xlF~B---~B since IlFI-/~.t([~,B---~B). PAF£ = 

~ek "---~ Prr,(T~ _~ fk E D~ 1) by Lemmas 1 and 3. If x ~ y E D~ then y IFB and 

PAF)7 = (k ~ B*. Hence, PAF£ = (~ ~ Prr, (rB*I) which is the desired conclu- 

sion since (D~B)* = PrT,(rB*l). 

Now suppose x ~  D~÷~. By Lemmas 1, 2 and 3 PAF~ = 

t~---~Prr,(f~<l~e~ E D ~ ) .  PAFA* follow as above. 

Case 2. x l F ~ A  

Choose y E D~ such that x '~y and ylF~B.  By the induction hypothesis 

PAF]  = ( ~ B * .  By Lemma 4, PAF~ = f~---~Con(T~ + ~ B * )  which is the 

desired conclusion. • 

LEMMA 6. In addition to the hypothesis o[ Lemma 5 assume n = k and 

IIFD,B--~B for all [3,B E S(A):  

(1) 01FA iff IIFA, 
(2) 01FA implies PAF0 -- (k -->A *, 

(3) 01F-~A implies PAF0 -- ~k --~ ~ A  * 

PROOF. (1) is checked by an easy induction on A. 

(2) and (3) are also proved by induction on A using (1) and an argument 

similar to that used to prove Lemma 5. • 

LEMMA 7. 0 = ~ek is true (in the standard model). 

PROOF. If f~ represents x in the standard model and x #  0 then Prr , ( tg# ~¢k t) 

is true in the standard model for some i. In that case T~F~# gk and by 

El-soundness of Z, £ # ~ek is true in the standard model - -  contradiction. • 

LEMMA 8. Tk + T = ('~ is consistent. 

PROOF. Since 1 E D ~, this follows from Lemmas 4 and 7 (and the fact that PA 

is true). • 
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PROOF OF THEOREM 2. AI-A3,  A,~ are clearly valid with respect to T. . . . . .  T,, 

A4 interprets as formalized instances of L6b's Theorem ([3]) which follow from 

PA, and the collection of formulas which are PA-valid with respect to T~ . . . . .  T, 

is closed under RI and R2. Also, [5]j(E]~B--->B) is PA-valid with respect to 

T, . . . . .  To if i < j, and E],B ~ B is Tj-valid with respect to T~ . . . . .  T, if i < j. By 

the assumption that each T, is arithmetically sound, [],B-->B is valid with 

respect to T~ . . . . .  T,. Hence (1)(b)~ (l)(a) and (2)(b)~ (2)(a). 

(2)(a):~(2)(c). Assume (2)(c) fails. By Theorem 2 of Section 2 let Y{ = 

(K, <~, Ik, D~ . . . . .  D, ) be a finite treelike model of PRL(n)  which is not a model of 

the formula, F, from (2)(c). Without loss of generality K = {1 . . . . .  m} and IlI--~F. 

By reducing the universe of 0% if necessary, it may also be assumed that 1 is the 

smallest element of K with respect to <~ and K = D. Construct Yfk and the 

interpretation * as above. By Lemma 8, Tk + T = ,ek is consistent. By Lemma 5 

and the fact that IlI--~A, Tk + I - = ( ~ I - ~ A * .  Hence T k Y A *  and A is not 

Tk-valid with respect to T, . . . . .  7",. 

(1)(a)~(1)(c). The argument is similar using Lemmas 6 and 7 in place of 
Lemmas 5 and 8. 

REMARK. Arithmetic soundness of each T~ is necessary for (1)(b)ff(1)(a), 

the assumption of arithmetic soundness may be dropped for (2)(b):::)(2)(a) and 

both ( l ) ( a ) ~  (l)(c) and (2)(a):::), (2)(c) follow from just Yrsoundness, 

§4. An example 

Consider the following M2-model: 

D~ is the entire universe, D2 is comprised of the circled nodes and the nodes 

labelled p are those which force p. Let A be the conjunction of the formulas 

"mF12ml-l,(l-l,_L v rap) ,  
~l-I~ml-I,(I-I,_L v p), 

FI,(FI,_L v "ml-I,p), 

[2,([2, _L v m [2, m p ) .  
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One can check that the bottom node forces U]~(D,B--~B) whenever [-I,B E 

S(A ), V%B~ B whenever EL B E S(A ) and [ 3 , B ~  B whenever [],B E S(A ). 
The bottom node also forces A. By Theorem 2, part 2 of Section 3 (or Lemma 5) 

there's an interpretation * with respect to PA, ZF such that A * is true and p* is a 

Boolean combination of ~ sentences. Let T = PA + Con(PA). A * is equivalent 

to 

ZFYCon(T + p*). 

ZFJCon(T + "--np *), 

TkCon(PA + p*), 

TkCon(PA + ~p*).  

Notice that p* is independent of ZF and cannot be chosen to be a Y_,j sentence. 
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