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ABSTRACT

The results herein solve positively some conjectures of Smoryiiski by generaliz-
ing results of Solovay (1976). The proofs rest on a modification of the usual
semantics for modal logic and Solovay’s techniques.

§1. Introduction

M, is the modal language consisting of
propositional variables: po, p1, p2,...
propositional constant: L
logical connectives: V,A, 1,
modal operators: 0.,0,,...,0.

The formulas of M, are constructed inductively in the usual way so that (1A isa
formula if A is. A theory in the language M, is a collection of formulas of M,
which contains all tautologies and is closed under modus ponens. If &/ is a set of
formulas of M, and B is a formula of M, then & + B means B is in the theory
generated by .

PA is the standard first order formalization of Peano Arithmetic (e.g. as in
[4D). 0 is the constant representing 0 and for each natural number n let 7, the
numeral for n, be $"0. For each formula ¢ in the language of PA, ¢’ is the
Godel number of ¢ and if the free variables of ¢ are among v,,...,v: then
T@(%,..., %) is the function definable in PA which represents the substitution of
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the numerals for xi,...,x in the free occurrences of vy,..., v, respectively. In
particular,

PAt+ oAy, ..., /) ="o(d,, ..., A).

All first order theories are tacitly assumed to be axiomatizable (i.e. recursively
enumerable) and to be equipped with an interpretation of PA. If T is a first
order theory then Pr+ is a unary predicate 2,-definable in PA which formalizes
provability in T. In particular, Pr satisfies the following derivability conditions:

D1. Tte iff PAFPr (o),

D2. PAFPr+("@) = Prr("Pr+("e')),

D3. PAFPr+("e) A Prr ("o — )= Prr("¢),

D4. PAt@(x1,....x. )= Pre("@(%1,..., %)) for ¥, formulas.

A theory T is X;-sound if every 3, arithmetic sentence proved by T is true; T is
arithmetically sound if every arithmetic sentence proved by T is true.

Given theories T1,..., T, an interpretation of M, with respectto T\,..., T, is an
assignment p~p* of arithmetic sentences to propositional variables. * is
extended to all formulas of M, inductively by preserving logical connectives and
so that 1*is 0 #0 and ((J,A)* is Pr, (A *'). A formula A of M, is T-valid with
respect to Ty,..., T, if TFHA* for all interpretations *; A is valid with respect
to T\,..., T, if A* is true (in the standard model) for all *.

The primary purpose of this paper is to study the decidability of the collection
of valid formulas for various T1...., T.. Note that if the collection of formulas of
M., which are valid with respect to T\,..., T, is decidable then the collection of
T:-valid formulas is decidable (remember that all first order theories are
assumed to be 2,-sound). Generalizing the solution by Boolos [1] of a problem of
Friedman [2}, Solovay [6] showed that if n =1 then the collection of valid
formulas is decidable. Smoryiiski conjectured that the set of valid formulas with
respect to PA, ZF is decidable. The main result of this paper, Theorem 2 of
Section 3, proves a generalization of Smoryfiski’s conjecture. An axiomatization
is given for the collection of valid formulas. The relevant modal theories and the
appropriate semantics are developed in Section 2. The central modal theories,
PRL(n), are generalizations of PRL(2) which Smoryfiski suggested (under a
different name) and which in turn generalizes G of [6]. Section 4 contains what
I consider an amusing application: There is a Boolean combination of 3,
formulas, ¢, such that PA+Con(PA)FCon(PA+¢) and PA+
Con(PA)FCon(PA + —1¢) while ZF ¥ Con(PA + Con(PA)+ ¢)  and
ZFFCon(PA + Con(PA)+ —1¢).
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§2. The theory PRL,

PRL, is the theory in M, generated from the axiom schemas
Al. Tautologies,

A2. JA A0(A - B)—0B,

A3 A —-,0A,

A4. O,(EA - A)- LA,

using the rules of inference

R1. A——fo;B (modus ponens)
A
R2. OA

An M,-model is a tuple ¥ =(K,<,IF,D,,...,D,) where < is a strict partial
ordering of K, I is a subset of K X{p,:n €Ew}and D, CK fori=1,...n K is
called the universe of ) and I is the forcing relation of J. The intuition (as with
standard Kripke models) is that the elements of K are possible worlds, and for
w € K, {p: wikp} consists of all propositions true in w. I is extended inductively
to other formulas, so that w ¥ L and

wkAvB if wiFA or wiB,
wktAAB if whkA and wlB,
wik—A iff wkA,

wrA—B it wkKFA orwiB,

wlFH[1A iff ulFA whenever w<u € D;;

K is a model of A if wit A for each w € K. X is a model of a set of formulas
if # is a model of each element of &. Th(¥) is the collection of all A for which ¥
is a model. If ¥' =(K',<',V, D1,...,D}) is an M,-model then K' is a submodel
of % provided K'CK and <', W, Di,...,D, are the restrictions of <, I,
D,,..., D, respectively to K'.

LemMa 1. If % is an M,-model then Th(¥X) contains A1-A3 and is closed
under R1 and R2.

PROOF. Straightforward. |

Assume o is a collection of formulas of M, containing the schemas A1-A3
and let T be the theory in M, generated from & using R1 and R2. The canonical
model of T, #r, will be constructed intermittently with the following lemmas.
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Let K be the set of all complete consistent theories in the language M, which
extend T. For 1=i=n and w € K, w/[J; is the set of formulas A such that
D.‘A e w.

LEMMA 2. w/l]; is a theory extending T.

ProoF. R2 guarantees that w/[]; extends T, and w/(J; is closed under modus
ponens by A2. |

For 1 =i = n define a binary relation <; on K by wy<.w, iff w,/O, C w.
Lemma 3. If w,<;w,<,w; then w,<,wi. In particular, <, is transitive.

PROOF. Assume w, <;w,<,w;, i.e. w,/[J;Cw, and w/L]; C wi. Suppose
[J.A € w,. By A3 and modus ponens, [J;[J,A € w,. Therefore, (1A € w; and
A Ew, |

% is the generalized Kripke model (K, <,,...,<,,lI) where w I p iff p € w.
Extend [IF to other formulas of M, as before in the case of logical connectives
and so that wiir[J,A iff ullF A whenever w <,u.

Lemma 4. WIFA iff A Ew.

ProOF. By induction on the complexity of A.

For A a proposition variable this is by definition, A = L is clear, and the
induction is obvious if A has one of the forms BvC, BAC, =B or B—~C.

Suppose A =[1:B.

Assume AZ w. B& w/(J; so w/lJ; U{—B} generates a consistent theory v
(using only modus ponens) by Lemma 2. Extend v to a complete consistent
theory u. w <, u and by the induction hypothesis u Il = B. This implies w # A.

Now assume A €w. B € w/[; so if w <,u then ulir B by the induction
hypothesis. Therefore w lIF A. [ ]

Let < be the transitive closure of <,U <,U ---U <.

LEMMA 5. If W) < Wz< iWs !ken W1<iW3.

Proor. By Lemma 3. n

HKr is the M,-model (K,C,F,D,,...,D,) where K consists of all finite
sequences (wi,..., w,) of elements of K with w, < w, < -+ < w, (w,..,w ) kp
iff p € w, and D; consists of all (wy,..., wi..) such that w, <;wy.,.

LEMMA 6. (wi,..,w)FA iff A € w,.

Proor. By induction on the complexity of A.



18 T. CARLSON Isr. J. Math,

As in Lemma 4, the nontrivial case is A =[1;B.

Assume AZ w,. w i [1,B so wilk— B for some w €K with w, <,w.
(Wi,...www)ED;, and by Lemma 4 and the induction hypothesis
(wi,...,wi, w1 B. Therefore, {(w,,..., wi)FA.

Now suppose A € wi. If (wi,..., Wi, Wisr,...,w,) €E D; then w, <;w, by the
previous lemma so B € w, and (w,,..., w,)IF B. Therefore (wy,...,wi) IF A. [ |

LEMMA 7. 3 is a model of T.
ProoF. Immediate. B
Lemma 8. If (LA—[LA is in T for all A then D; D D;.

PprOOF. The assumption implies w/C];— w/LJ; for all w € K*. Hence, if
w < ,;w,then w, <,w. which implies D; D D, |

THEOREM 1. Assume A is a set of formulas of M, containing schemas A1-A3
and let T be the theory generated from A using R1 and R2. If B is a formula of M,
the following are equivalent:

1. BET.

2. Every model of T is a model of B.

3. Hr is a model of B.

ProoF. (1 = 2) By Lemma 1.

(2 > 3) By Lemma 7.

(3= 1) Suppose BEZ T. Let w be a complete consistent theory containing T
and —B. In ¥+, wkB. [

REMARK. Assume & is a set of formulas of M, containing A1-A3 with the
property that (1, A,....0,A € o whenever A € o and A doesn’t have the form
CIB. If T is the theory generated by & using R1 and R2 then B € T iff &/ + B.
This may be proved syntactically or by modifying the construction of #r by
letting K be all complete consistent theories containing .

This implies that for any o containing A1-A3, if B can be derived from &
using R1 and R2 then B has a derivation in which all applications of R2 come
before any application of RI.

LEMMA 9. Assume T is a theory in M, which contains A1-A4 and is closed
under R1 and R2. If A is a finite set of formulas of M,, ¥ = (K, <,F,D,,...,D,)
is a model of T and wi,...,wi €K then there is a finite submodel X' =
(K',<' W,D'....,D)) of ¥ whose universe contains w., ..., w, such that for each w
in the universe of #' and each A € o

wiFA iff wiA.



Vol. 54, 1986 MODAL LOGICS 19

ProoF. Without loss of generality o is closed under subformulas. Let
Ay, ..., A, list the elements of o of the form JB. If 1 =j=m and A; =0.B
choose f;: K— K (a Skolem function for A;) so that fi(w)=w if wlA; and if
wlk—A; then w<fi(w)E€ D, and fj(w)F—B a;B. This is possible by A4.

CLaiM 1. If K'C K is closed under f,,....f. and I is the submodel of ¥ with
universe K' then wHA iff wkA whenever w € K' and A € A.

The proof of Claim 1 is straightforward induction on the complexity of A.

Note that f(w)<tu implies f;(u)= u. This easily implies

CramM 2. The closure of {w.....,wi} under fi.....f. is finite.

By Claims 1 and 2 the lemma follows. |

An M,-model % =(K,<,F.D,,....D,) is treelike if (K, <) is a tree, that is,
{u € K:u<aw} is linearly ordered for w € K.

Assume 2 is a strict partial ordering of {1,...,n}. PRL(%) is the theory in the
language M, generated by Rl and R2 from A1-A4 along with the schema

AP. OA—=OA  fori<,]

LemMa 10. If ¥ =(K. <9, v.D.....D,) is a finite M,-model with D, 2 D,
whenever | <,j then ¥ is a model of PRL(P).

Proor. To check A4 use the fact that K is finite (in fact the assumption that
<1 has no infinite increasing chain w,<iw,<Iw-<1---is enough). n

THEOREM 2. Assume A is a formula of M, and T is the theory generated by
PRL(P)YU{A} where P is a strict partial ordering of {1,....n}. If B is a formula of
M, then B € T iff every finite treelike model of A which satisfies D; D D, whenever
i <,Jis a model of B.

ProoF. (=) By Theorem 1 and Lemma 10.

(<) Suppose B € T. There is w € K7 such that wk—1B (in #7) by Theorem
1. By Lemma 9 there’s a finite submodel ¥’ of #; which is a model of A but not
of B. #' is treelike since #; is. By Lemma 8, D{D D} if i<,j where
H'=(K',C,VF,Dj,....D}). |

CoroLLARY. PRL(P) is recursive.

§3. Decidability of the collection of valid formulas

If T is a first order theory then Refl(T') is the schema of sentences of the form
Pre(fe)— ¢
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The main result of this section is

THEOREM 1. Assume T,,.... T, are first order theories which are arithmetically
sound and T, contains Refl(T,) if i < j. The collection of formulas which are valid
with respect to T,,..., T, is recursive.

Note that the conclusion of the theorem implies that the set of T;-valid
formulas is recursive since A is T;-valid with respect to T',..., T, iff (J;A is valid.

If # is the usual linear ordering of {1,...,n} write PRL(n) for PRL{(P).
PRL(n)" is the theory in M, generated by R1 and R2 from PRL(n) along with
formulas of the form 0J;((0:B — B) where i < j. Refl; is the schema consisting of
the formulas of the form (J,B— B.

Theorem 1 follows from

THEOREM 2. Assume T,,...,T, are arithmetically sound first order theories
such that T; contains Refl(T;) for i <j. If A is a formula of M,
(1) the following are equivalent:
(a) A is valid with respect to T\,..., T,
(b) PRL(n)" + Refl,(1=i = n)tA,
() the following is a theorem of PRL(n):
(M{O0,0B—B):0BeSA)andi <jHha(M{0B—B:0BESAM—>A;

(2) the following are equivalent for 1 =k = n:
(a) A is Ti-valid with respect to T\,..., T,
(b) PRL(n)" + Refl; (1=i<k)FA,

(c) the following is a theorem of PRL(n):

(m{O,a0B—B):dBES(A)andi<j})
A(M{OB—-B:OBES(A)andi <k})—A;

where S(A) is the collection of subformulas of A.

The proof will use a modification of the function h from [6].

Suppose ¥ =(K,<,F,D,,...,D,) is a finite treelike M,-model where K =
{1,...,m} and 1 is the smallest element of K with respect to <. Also assume
K=D,2D,D 2D, Fix k with I=sk=n.

Let % = ({0,1,...,m}, <., D1,..., D7) where we extend < to 0 so that 0<1,
I extends I and OFp iff 1kp, and
{D,-U{l} if i =k,

Dk=
D, —{1} if k<i
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Set D%, = for convenience. Note that for any formula A of M,, xHA iff
xIFA for x#0.

Using the recursion theorem, there is a X,-definable function h, in PA such
that PA proves

X if a is the Godel number of a proof of
h(a+1)= [ i# € in T; and h,(a)<x € D¥,
hi(a) otherwise,

where ¢ is a constant defined in PA to be lim,_.. h«(a). One can prove in PA
that h,(a)<d h.(a +1) so that ¢, is defined.

LEMMA 1. PAFZE =6 —>Pra.('x Q6.

PROOF. PAty = hy(a)— Prea('y = hi(d)") by using induction on a. [ |
LEMMA 2. If x#0 and x& DY, then PAFZ = €, — Pr (‘5 # ¢)).

PrROOF. Immediate from the choice of h.. |
LEmMmA 3. TH6#0— 6 € DY

ProoF. This is obvious for i =1 since D} =K.
Suppose i# 1, x#0 and x& D{. By the previous lemma

PAFX =€ —Pry_((X#6)).
Since T; D Refl(T.-)),
TitPry, ("£# 6)—> i # €.
Therefore Titbx # 6. |
Define Con(T + ¢) to be —Prr('—¢).
LEMMA 4. If x<\y € D then PAFX = 6, —>Con(T, + § = 6.).
PROOF. Immediate from the properties of h,. [

Define an interpretation * with respect to T,...,T, by letting p* be
W {x = ¢ :xIkp}. Note that p* is equivalent to a Boolean combination of 3,
sentences in PA. In fact, if p has the property that if {w € K : w I p} is closed
upwards with respect to < then p* is equivalent to a %, sentence in PA.

LEMMA 5.  Assume A is a formula of M, such that 1HJ;((0;B — B) whenever
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1B € S(A) withi < jand 1+1,B— B whenever (1B € S(A)andi < k. Ifx#0
then xFA implies PA+X = €,— A* and xIr— A implies PArZ = 6, —>1A*.

ProOOF. By induction on the complexity of A.

If A is a propositional variable or constant the conclusion is immediate from
the definition of *, and the inductive step for v, A, = or — is straightforward.

Suppose A =[0B and 0# x = m.

Case 1. xFA

First suppose x € Df,;. Note that xFB. For if x =1 then i<k and
xHI1,B— B and if x#1 then xIH,B— B since 1#3;.,((0.B— B). PAlx =
¢, >Pr. ('t <6 €D!') by Lemmas 1 and 3. If x <y € D} then y B and
PAFy = £ — B*. Hence, PA+% = £, — Prr.('B*') which is the desired conclu-
sion since (0,B)* = Pry.('B*").

Now suppose xZD%,. By Lemmas 1, 2 and 3 PAri=
¢, —Prr.('x<6 € DY). PAFA* follow as above.

Case 2. xIFMA

Choose y € Df such that x<y and yF—B. By the induction hypothesis
PAt+y = ¢ ——B*. By Lemma 4, PA+x = ¢, —» Con(T; + 1 B*) which is the
desired conclusion. ]

LEMMA 6. In addition to the hypothesis of Lemma 5 assume n =k and
1HJ.B— B for all [J.BES(A):

(1) OFA iff 1A,

(2) OFA implies PAH0 = 6. — A*,

(3) OF— A implies PAFO = 6, —>—1A*,

Proof. (1) is checked by an easy induction on A.
(2) and (3) are also proved by induction on A using (1) and an argument
similar to that used to prove Lemma 5. [ ]

LEMMA 7. 0= ¢, is true (in the standard model).

Proor. If ¢, represents x in the standard model and x # 0 then Prr, (' # £.))
is true in the standard model for some i In that case T:tX# ¢ and by
3.-soundness of T, X # ¢, is true in the standard model — contradiction. ||

LEMMA 8. T +1= ¢ is consistent.

PrOOF. Since 1 € Dy, this follows from Lemmas 4 and 7 (and the fact that PA
is true). L
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PROOF OF THEOREM 2. A 1-A3, AP are clearly valid with respectto T,..., T,,
Ad interprets as formalized instances of Lob’s Theorem ([3]) which follow from
PA. and the collection of formulas which are PA-valid with respect to T\,.... T,
is closed under R1 and R2. Also, [J,(LJ;B— B) is PA-valid with respect to
T....T, if i <j, and (0B — B is T,-valid with respect to T,,..., T, if i <j. By
the assumption that each T, is arithmetically sound, [;B— B is valid with
respect to Ti,....T,. Hence (1)(b)= (1)(a) and (2)(b) = (2)(a).

(2)(@)=> (2)(c). Assume (2)(c) fails. By Theorem 2 of Section 2 let # =
(K.<,.D,....,D,) be a finite treelike model of PRL(n) which is not a model of
the formula, F, from (2)(c). Without loss of generality K = {1,...,m} and lF—F.
By reducing the universe of J/ if necessary, it may also be assumed that 1 is the
smallest element of K with respect to <0 and K = D. Construct ¥, and the
interpretation * as above. By Lemma 8, T, + 1 = ¢, is consistent. By Lemma 5
and the fact that 1k—A, T, +1=464+-A* Hence TWFA* and A is not
T, -valid with respect to T,,...,T..

(1)@)= (1)(c). The argument is similar using Lemmas 6 and 7 in place of
Lemmas 5 and 8.

REMARK. Arithmetic soundness of each T; is necessary for (1)(b)=> (1)a),
the assumption of arithmetic soundness may be dropped for (2)(b) = (2)(a) and
both (1){a)=> (1)(c) and (2)(a) > (2)(c) follow from just X,-soundness.

§4. An example

Consider the following M.-model:

p p

D, is the entire universe, D; is comprised of the circled nodes and the nodes
labelled p are those which force p. Let A be the conjunction of the formulas

=0,-0(O3, L v —p),

0,00, L v p),
Dx(Dx-L v _'Dlp),
00, 1Lv—0O-p).
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One can check that the bottom node forces [1.(C],B— B) whenever [1,B €
S(A), [0.B— B whenever (1.B € S(A) and [J,B— B whenever [1,B € S(A).
The bottom node also forces A. By Theorem 2, part 2 of Section 3 (or Lemma 5)
there’s an interpretation * with respect to PA,ZF such that A * is true and p* isa
Boolean combination of X, sentences. Let T = PA + Con(PA). A* is equivalent
to

ZF¥Con(T +p*).
ZFF¥Con(T + —p*),
T+Con(PA + p*),
TFCon(PA + —p*).

Notice that p* is independent of ZF and cannot be chosen to be a 2, sentence.
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